AHRS400

ATTITUDE & HEADING REFERENCE SYSTEM

- Roll, Pitch and Heading Angle in Dynamic Environments
- Enhanced Performance Kalman Filter Algorithm
- ▼ High Stability MEMS Sensors
- ▼ EMI & Vibration Resistant

Applications

- ▼ UAV/RPV Control
- ▼ Platform Stabilization
- Avionics

inertial systems

64

AHRS400CD

The Crossbow AHRS400CD is a high performance, solid-state attitude and heading reference system intended for airborne applications such as UAV control, avionics and platform stabilization. This high reliability, strap down inertial sub-system provides attitude and heading measurements with static and dynamic accuracy that exceeds traditional spinning mass vertical and directional gyros.

The AHRS400CD offers enhanced stability and performance compared with previous 400-Series configurations by incorporating the latest advancements in MEMS accelerometers. These new MEMS accelerometers also provide significant improvement in vibration performance in a variety of different application environments.

The AHRS400CD achieves its excellent performance by employing proprietary Kalman Filter algorithms to determine stabilized roll, pitch, and heading angles in static and dynamic conditions. The Kalman Filter implementation results in a continuous on-line gyro bias calibration, and an adaptive attitude and heading measurement that is stabilized by the long term gravity and magnetic north references. Output data is provided in both analog and digital (RS-232) formats.

Each Inertial System comes with a User's Manual offering helpful hints on programming, installation, and product information. In addition, Crossbow's GYRO-VIEW software is included to assist you in system development and evaluation, and allows you to perform data acquisition.

AHRS Block Diagram

Document Part Number: 6020-0025-12 Rev B

Crossbøw

Specifications	AHRS400CD-100	AHRS400CD-200	Remarks	
Performance				
Update Rate (Hz)	> 50	> 50	Continuous update mode	
Start-up Time Valid Data (sec)	< 1	< 1		
Fully Stabilized Data (sec)	< 60	< 60	Under static conditions	
Attitude				
Range: Roll, Pitch (°)	± 180, ± 90	± 180, ± 90		
Static Accuracy (°)	<± 0.75	<± 0.75		
Dynamic Accuracy (° rms)	± 2.0	± 2.5		
Resolution (°)	< 0.1	< 0.1		
Heading				
Range (°)	± 180	± 180		
Static Accuracy (°)	<± 1.5	<± 2		
Dynamic Accuracy (° rms)	± 3	± 4		
Resolution (° rms)	< 0.1	< 0.1		
Angular Rate				
Range: Roll, Pitch, Yaw (°/sec)	± 100	± 200		
Bias: Roll, Pitch, Yaw (°/sec)	<± 1.0	<± 1.0	Scaled sensor mode	
Bias: Roll, Pitch, Yaw (°/sec)	<± 0.05	<± 0.05	Angle mode	
Scale Factor Accuracy (%)	< 1	< 1		
Non-Linearity (% FS)	< 0.3	< 0.3		
Resolution (°/sec)	< 0.025	< 0.05		
Bandwidth (Hz)	>25	>25	-3 dB point	
Random Walk (°/hr¹/²)	< 2.25	< 4.5	Typical	
Acceleration				
Input Range: X/Y/Z (g)	± 4	± 4		
Bias: X/Y/Z (mg)	<± 12	<± 12		
Scale Factor Accuracy (%)	< 1	< 1		
Non-Linearity (% FS)	< 1	< 1		
Resolution (mg rms)	< 0.6	< 0.6		
Bandwidth (Hz)	>10	>10	-3 dB point	
Random Walk (m/s/hr ^{1/2})	< 1.0	< 1.0		
Environment				
Operating Temperature (°C)	-40 to +71	-40 to +71		
Non-Operating Temperature (°C)	-55 to +85	-55 to +85		
Non-Operating Vibration (g rms)	6	6	20 Hz - 2 KHz random	
Non-Operating Shock (g)	1000	1000	1 ms half sine wave	
Electrical				
Input Voltage (VDC)	9 to 30	9 to 30		
Input Current (mA)	< 300	< 300		
Power Consumption (W)	< 4	< 4	at 12 VDC	
Digital Output Format	RS-232	RS-232		
Analog ¹ Range (VDC)	± 4.096	± 4.096	Pins 8, 9, 10, 12, 13, 14	
	0 to 5.0	0 to 5.0	Pins 5, 6, 7	
Physical				
Size (in)	3.0 x 3.75 x 4.1	3.0 x 3.75 x 4.1	Incl. mounting flanges	
(cm)	7.62 x 9.53 x 10.42	7.62 x 9.53 x 10.42	Incl. mounting flanges	
Weight (lbs)	< 1.7	< 1.7		
(kg)	< 0.77	< 0.77		
Connector	15 pin sub-miniatur	re "D" male		

15 Pin "D" Connector Male Pinout

Pin	Signal
1	RS-232 Transmit Data
2	RS-232 Receive Data
3	Input Power
4	Ground
5	X-axis accel voltage ¹
6	Y-axis accel voltage ¹
7	Z-axis accel voltage ¹
8	Roll-axis angular rate ²
9	Pitch-axis angular rate ²
10	Yaw-axis angular rate ²
11	NC – Factory use only
12	Roll angle/X-axis mag voltage ³
13	Pitch angle/Y-axis mag voltage ³
14	Heading angle/Z-axis mag voltage ³
15	NC – Factory use only

Notes
The accelerometer voltage outputs are taken directly from the accelerometers without compensation or scaling.
The angular rate analog outputs are scaled to represent degrees/second. Outputs are created by a D/A converter.
Actual output depends on AHRS measurement mode.

Pin Diagram

65

Notes

¹All DAC analog outputs are fully buffered and are designed to interface directly to data acquisition equipment. Specifications subject to change without notice

Ordering Information

Model	Description	Gyro (°/sec)	Accel (g)
AHRS400CD-100	Attitude & Heading Reference System	± 100	± 4
AHRS400CD-200	Attitude & Heading Reference System	± 200	± 4

CALL FACTORY FOR OTHER CONFIGURATIONS

Document Part Number: 6020-0025-12 Rev B