
KXP84 Series Summary Data Sheet

Accelerometers and Inclinometers I²C/SPI Interface Free-fall and High-g Motion Interrupts Tri-Axis XYZ

HDD Protection

Pedometers

Cell Phones and Handheld PDAs

Universal Remote Controls

Theft and Accident Alarms

Gaming and Game Controllers

Cameras and Video Equipment

GPS Recognition Assist

Computer Peripherals

APPLICATIONS

the wafer level.

Free-fall Detection

Gesture Recognition

Inclination and Tilt Sensing

Image Stabilization

Sports Diagnostics

Vibration Analysis

Static or Dynamic Acceleration

Inertial Navigation and Ded(uctive) Reckoning

FEATURES

Ultra-Small Package — 5x5x1.2mm DFN

Precision Tri-axis Orthogonal Alignment

I²C/SPI Interface

Free-fall Interrupt Output

High-g Motion Interrupt Output

Low Noise

Lead-free Solderability

Excellent Temperature Performance

High Shock Survivability

Very Low Power Consumption

Selectable Power Reduction Modes

User Definable Bandwidth

Factory Programmable Offset and Sensitivity

Self-test Function

PROPRIETARY TECHNOLOGY These high-performance silicon micromachined linear accelerometers and inclinometers consists of a sensor element and an ASIC packaged in a 5x5x1.2mm Dual Flat No-lead (DFN). The sensor element is fabricated from single-crystal silicon with proprietary Deep Reactive Ion Etching (DRIE) processes, and is protected from the environment by a hermetically-sealed silicon cap wafer at

The KXP84 series is designed to provide a high signal-tonoise ratio with excellent performance over temperature. These sensors can accept supply voltages between 2.7V and 5.25V. Sensitivity is factory programmable allowing customization for applications requiring $\pm 1.5g$ to $\pm 6.0g$ ranges. Sensor bandwidth is user-definable.

The sensor element functions on the principle of differential capacitance. Acceleration causes displacement of a silicon structure resulting in a change in capacitance. An ASIC, using a standard CMOS manufacturing process, detects and transforms changes in capacitance into an analog output voltage, which is proportional to acceleration. This voltage is digitized by an on-board A/D converter and is accessed via an inter-integrated circuit (I²C) bus or serial peripheral interface (SPI). The sense element design utilizes common mode cancellation to decrease errors from process variation and environmental stress.

36 Thornwood Dr. - Ithaca, NY 14850 USA tel: 607-257-1080 - fax: 607-257-1146 - www.kionix.com - info@kionix.com

Kionix' is a registered trademark of Kionix, Inc. Products described herein are protected by patents issued or pending. Information provided in this document is believed to be accurate and reliable but is not guaranteed. Kionix does not assume responsibility for its use or distribution. No license is granted by implication or otherwise under any patent or other rights of Kionix. Kionix reserves the right to change product specifications or discontinue this product at any time without prior notice.

© Kionix 2005 Rev 0.4 October 21, 2005 Page 1 of 4

KXP84 Series Summary Data Sheet

PRODUCT SPECIFICATIONS

PERFORMANCE SPECIFICATIONS 1									
PARAMETERS	UNITS	KXP84	CONDITION						
Range ²	g	±2.0	Factory programmable						
Sensitivity	Counts/g	819 (typical)	12 bit operation						
0g Offset vs. Temp.	mg	±150	-40 to 85 °C						
Sensitivity vs. Temp	%	±2.0 typical (±3.0 max)							
Noise	mg / \sqrt{Hz}	175 (typical) 250 (max)							
Bandwidth ³	Hz	0 to 3300 max (x and y) 0 to 1700 max (z)	-3dB						
Non-Linearity	%	±0.1 typical (±0.5 max)	% of full scale output						
Ratiometric Error	%	±0.4 typical (±1.5 max)							
Cross-axis Sensitivity	%	±2.0 typical (±3.0 max)							
Resolution	mg	1.22 typical							
A/D Conversion Time	us	200 typical							
Digital Communication Speed	MHz	1 typical							
Power Supply	V	3.3	Standard						
I/O Pads Supply Voltage	V	1.7 to Vdd							
Current Consumption	mA	1.0 typical ⁴	Operating						
•	μΑ	10 max	Standby—over temperature						
ENVIRONMENTAL SPECIFICATIONS									
PARAMETERS	UNITS	KXP84	CONDITION						
Operating Temperature	°C	-40 to 85 Powered							
Storage Temperature	°C	-55 to 150	Un-powered						
Mechanical Shock	g	4600	Powered or un-powered, 0.5 msec halversine						
ESD	V	3000	Human body model						

Notes

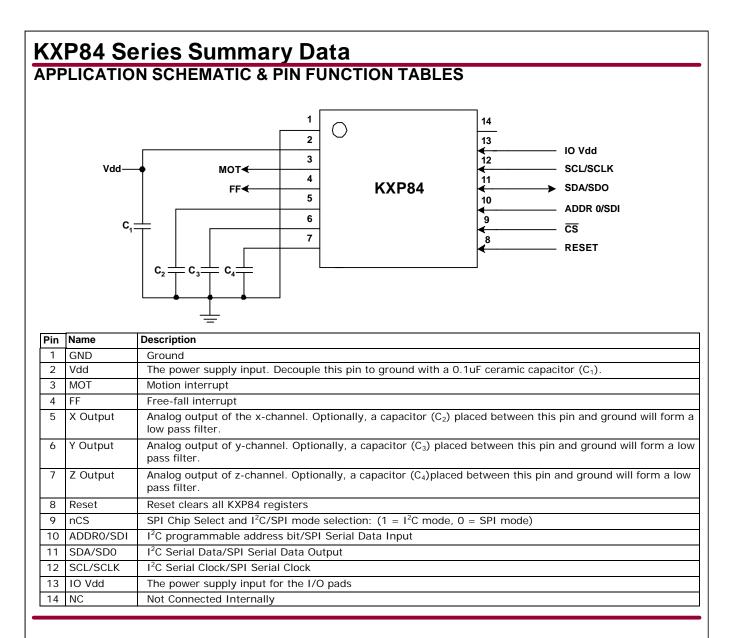
¹ The performance parameters are programmed and tested at 3.3 volts. However, the device can be factory programmed to accept supply voltages from 2.7 V to 5.25 V. Performance parameters will change with supply voltage variations.

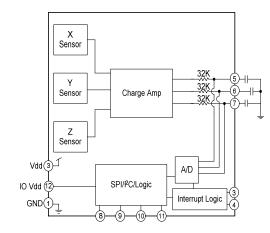
² Custom ranges from 1.5g to 6g available.

 3 The bandwidth is determined by the external capacitors: C₂ , C₃ , and C₄ (see application circuit).

⁴ Actual current consumption during operation depends on user selected sampling and interrupt speeds.

Application Design Equations

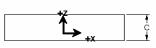

The bandwidth is determined by the filter capacitors connected from pins 5, 6 and 7 to ground. The response is single pole. Given a desired bandwidth, f_{BW} , the filter capacitors are determined by:

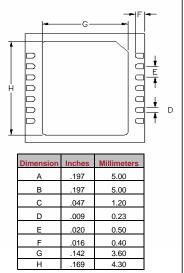

$$C_2 = C_3 = C_4 = \frac{4.97 \times 10^{-6}}{f_{BW}}$$

Notes

Self-test and standby modes are enabled through the control registers.

CAUTION: ELECTROSTATIC SENSITIVE COMPONENT © Kionix 2005 Rev 0.4 October 21, 2005 Page 2 of 4





Note

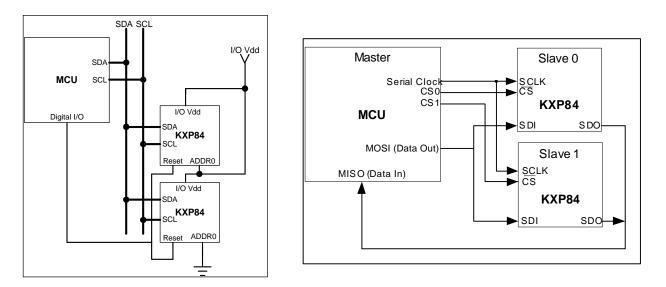
 1 When device is accelerated in +X, +Y, or +Z direction, the corresponding output will increase.

© Kionix 2005 Rev 0.4 October 21, 2005 Page 3 of 4

KXP84 Series Summary Data

KXP84 INTERRUPT FEATURES

The KXP84 features a high-g motion interrupt (MOT) and a free-fall interrupt (FF). Each interrupt is user definable and features a customizable debounce timer.


High-g Motion Interrupt - The high-g motion interrupt goes high when a high-g event is detected. A high-g event occurs when the acceleration sensed on any axis exceeds an acceleration threshold for a certain amount of time. The acceleration threshold and debounce time are set by the user.

Free-fall Detection Interrupt - The free-fall interrupt goes high when a free-fall event is detected. A free-fall event occurs when all three accelerometer axes simultaneously fall below an acceleration threshold for a certain amount of time. The acceleration threshold and debounce time is set by the user.

The user has the flexibility to customize the KXP84 to best suit their application.

KXP84 DIGITAL INTERFACES

The Kionix KXP84 digital accelerometer has the ability to communicate on both I²C and SPI digital serial interface busses. This flexibility allows for easy system integration by eliminating analog-to-digital converter requirements and by providing direct communication with system micro-controllers

KXP84 I²C Connections

ORDERING GUIDE

Product	Axis(es) of Sensitivity	Range (g)	Span (counts)	Sensitivity (mg/count)	Offset (counts)	Operating Voltage (V)	Temperature (°C)	Package
KXP84-1050	XYZ	2	+/- 1638	1.22	2048	2.8	-40 to +85	5x5x1.2mm DFN
KXP84-2050	XYZ	2	+/- 1638	1.22	2048	3.3	-40 to +85	5x5x1.2mm DFN

An evaluation board is available upon request.

